If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X=10000
We move all terms to the left:
X^2+X-(10000)=0
a = 1; b = 1; c = -10000;
Δ = b2-4ac
Δ = 12-4·1·(-10000)
Δ = 40001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{40001}}{2*1}=\frac{-1-\sqrt{40001}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{40001}}{2*1}=\frac{-1+\sqrt{40001}}{2} $
| 6t-4/2t=0 | | x12=1484 | | p/2.3=p+0.6 | | 1/2x-3=x+2 | | F(x)=7x=-5 | | 3/48a+12)=28.2 | | 20+1x=30+0.50x | | 10+.15x=15+.10x | | s/10=21 | | s10=21 | | b+278=366 | | 582=f+475 | | 1/8x+2x+7/8=-30 | | 2x+10=28 | | 58−y=47 | | 3(2y-1)=8+4 | | 2x+10=282x+10=28 | | 3k+30=90 | | g−10=167 | | 25+2r=49 | | j11=23 | | 9–4x=-7 | | 25w=250 | | –4z=–20 | | p+398=985 | | 2x+–8x=–18 | | 2-0,4x=-0,6x | | (x)=4(1.34) | | 2c+11=-13 | | 8=z/27 | | 14(8+4x)=6x(5-11x) | | 7.2b=15 |